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Abstract
We describe the finite element implementation of the method of Alvarez and Flores (2015) for
computing solutions and Lagrange multipliers associated to the uniform constraint in the family
of variational problems

inf

{∫
Ω

(
1

2
W (|∇v|2)− f(v))

∣∣∣‖∇v‖∞,Ω ≤ 1, v ∈ g +W 1,s
0 (Ω)

}
by solving the p-Laplacian penalized approximation:

−div((W ′(|∇up|2) + |∇up|p−2)∇up) = f ′(up) in Ω

up = g ∂Ω.

With the default parameters, the software gives an approximate solution and the corresponding
Lagrange multiplier for the problem of the elastoplastic torsion of a cilindrical bar of section Ω:

min
v∈K0

∫
Ω

(
1

2
|∇v(x)|2 − 4v(x))dx

for K0 = {v ∈ H1
0 (Ω) | |∇v(x)| ≤ 1 a.e x ∈ Ω} and Ω = unit disk.
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1. Introduction

We discuss the computational aspects of solving the class of scalar Dirichlet problems by the finite
elements method

inf{J(v) | ‖∇v‖∞,Ω ≤ 1, v ∈ g +W 1,s
0 (Ω;R)}, (1)

where ‖∇v‖∞,Ω = ess- sup{|∇v(x)| : x ∈ Ω}, g ∈W 1,∞(Ω;Rm) ∩ C(Ω;R) and

J(v) =

∫
Ω

(
1

2
W (|∇v|2)− f(v)) (2)

for some functions W and f .
The model case of (1) is the problem of the elastoplastic torsion of a cilindrical bar of section Ω:

min
v∈K0

1

2

∫
Ω

(|∇v(x)|2 − h(x)v(x))dx (3)

for K0 = {v ∈ H1
0 (Ω) | |∇v(x)| ≤ 1 a.e x ∈ Ω}.

Let us consider the penalized problem

min

{
1

2

∫
Ω
W (|∇v|2) +

1

p

∫
Ω
|∇u|p −

∫
Ω
f(v) : v ∈ g +H1

0 (Ω)

}
. (4)

By the convexity assumptions on the functions W and φ, that problem has a unique solution up
which is a weak solution of the Euler-Lagrange equation:

− div((W ′(|∇up|2) + |∇up|p−2)∇up) = fup. (5)

Alvarez and Flores (2015) showed that the solutions up of (4) converge as p→∞ to a solution of
the constrained problem (1), and moreover |∇up|p−2 converges to the Lagrange Multiplier associated
to the pointwise constraint |∇u| ≤ 1. We are thus led to solve the quasilinear elliptic equations
(5) for large values of p. However, for large p the convergence and stability of such an iterative
procedure is a delicate issue. In the following we describe some techniques allowing to compute good
approximations for values of p in the thousands and/or under mild departures from the hypothesis of
Alvarez and Flores (2015).

2. Numerical Implementation

Let us consider the variational formulation for the p-Laplacian penalized problem (4). Alvarez
and Flores (2015) proposed to solve it by a descent algorithm using the full Newton direction wN ,
computed as

∫
Ω

(G(|∇up,n|2) + (p− 1)|∇up,n|p−2)∇wNn ∇v =

−
∫

Ω
(W ′(|∇up,n|2) + |∇up,n|p−2)∇up,n∇v +

∫
Ω
fv ∀v ∈ Vh, (6)

where Vh stands for the finite element space under consideration and G(s) := W ′(s) + 2sW ′′(s) is
supposed to be a positive function for any s > 0. In our implementation, the functions

double W (double Du2) const;
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double Wp (double Du2) const;

double G (double Du2) const;

should provide the values of the functions W (|∇u|2),W ′(|∇u|2) and G(|∇u|2) respectively.
The simplest implementation of this Newton algorithm is described in Algorithm 1.

Algorithm 1: Inner iterations on a given mesh and for a fixed p.

Given p > 2 and an initial point up,0 ∈ Vh, choose c1, ε and max inner
Set n := 0 and iterate:

1. Compute the multiplier λp,n = |∇up,n|p−2.
2. Find the descent direction wNn by solving (6).
3. Perform a line-search with sufficient decrease condition, i.e,

find αn > 0 satisfying

Jp(up,n + αnw
N
n ) ≤ Jp(up,n) + c1αnJ

′
p(up,n)[wNn ] (7)

4. Set up,n+1 = up,n + αnw
N
n .

5. If ‖J ′p(up,n+1)‖ ≤ ε or n ≥ max inner stop.
Otherwise update n = n+ 1 and go to step 1.

It is customary to define the function φ(α) = Jp(up,n+αnw
N
n ). In this way, (7) can be simplified

to
φ(α) ≤ φ(0) + (c1φ

′(0))α (8)

A step-length satisfying the sufficient decrease condition (8) is found by a home made line search
procedure based on quadratic interpolation. The detailed implementation is presented in Algorithm 2;
it follows the general guidelines from Nocedal and Wright (2006). For large values of p the objective
function can take on infinity values; in these cases the line-search algorithm performs Armijo’s steps
until a finite value is reached.

Algorithm 1 can be greatly improved by using adaptive mesh refinements. Numerical results by
Alvarez and Flores (2015) show that they are indeed necessary in order to obtain good accuracy.

It can be sensitive with respect to the initial point too, particularly for large p and/or when a non-
homogeneous boundary condition is given. A way around this difficulty is to adopt a path-following
strategy, which consists in running initially the algorithm on a coarse mesh and for a low value of p,
and then increasing p and adaptively refining the mesh until reaching a target p. Some extra mesh
refinements can be eventually performed once the target p has been achieved. Our implementation is
outlined in Algorithm 3. The adaptive refinements proceed by refining a percentage of the cells with
the highest a posteriori gradient approximation error according to the estimator by Kelly et al. (1983)
(see also Ainsworth and Oden, 1997) provided by the deal.II library. The descent directions are
computed solving the systems by the conjugate gradient algorithm with a SSOR preconditioner.

2.1 Test problems

We provide three different pre-defined domains for solving the problem

min

{
J(u) :=

1

2

∫
|∇u|2 −

∫
hu

∣∣∣∣ |∇u| ≤ 1 a.e in Ω
u = g on ∂Ω

}
, (9)

CMM



Elastoplastic torsion implementation using the deal.II library — 4/10

Algorithm 2: Path-following algorithm for solving (4)

Data: Parameters: max LS it;initial steplength;
Global variables: old-α,φ(0), φ′(0), old-φ′(0);

/* Initializations */
initialize mesh;
refine mesh No of initial refinements times;
initialize finite element space;
cycle=0;
p =init p;
up = u0;
/* First loop */
/* Prepare initial condition increasing p and refining mesh */
while p < actual p do

run Algorithm 1 with up as starting point ;
refine mesh adaptively;
transfer up to new mesh;
++cycle;
p+=∆p;

/* Second loop */
/* Solve problem for target p refining mesh only */
p =actual p;
while cycle < adapt ref do

run Algorithm 1 ;
refine mesh adaptively;
transfer up to new mesh;
++cycle;
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Algorithm 3: Line-search used in step 3. of Algorithm 1

Data: Parameters: max LS it;initial steplength;
Global variables: old-α,φ(0), φ′(0), old-φ′(0);
Procedure arguments: inner iteration;

Result: step-size α
/* */
/* initializations */
/* */
done=false;
it=0;
if inner iteration=0 then

α=initial steplength
else /* there exists an steplength from previous inner iter.

*/

α = min
(

1.45 old-αold-φ′(0)
φ′(0) , 1.0

)
;

/* */
/* main loop */
/* */
while (!done) and (it< max. LS. it.) do

/* new try obtained by quadratic interpolation */

α+ = − φ′(0)α2

2(φ(α)−φ(0)−φ′(0)α) ;
if α+ < 10−3α or |α+ − α|/α < 10−8 then

α+ = α/2;
else if φ(α)− φ(0) > 1e3|φ(0)| then

α+ = α/10;

α = α+;
φ(α)=evaluate Jp(up,n + αwn);
done=checkWolfe(α, φ(α)) ; /* check condition (8) */
it=it+1;

Return α;
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Figure 1: Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a circle.

The unit circle, the unit rectangle and the domain depicted in Figure 3 (Glowinski et al., 1981, Figure
3.4). The domains can be modified or added in the function
ElastoplasticTorsion<dim>::init mesh().
In Figures 2 and 3 we show the solutions of Problem 9 in a rectangle and a domain with an interior
corner, respectively.

Denote by D the unit disk of R2, i.e D = {x ∈ R2 | x2
1 + x2

2 < 1}. When Ω = D and h is
constant, (9) has an explicit solution. If h ≡ 4 and g ≡ 0 the solution is given by (Glowinski et al.,
1981):

u(x) =

{
1− r if 1/2 ≤ r ≤ 1

−r2 + 3/4 if 0 ≤ r ≤ 1/2
(10)

where r =
√
x2 + y2. Since Ω is convex, in this case the multiplier λ is continuous (Brézis, 1972).

In fact we obtained its explicit expression, which is given by

λ(x) =

{
2r − 1 if 1/2 ≤ r ≤ 1

0 if 0 ≤ r ≤ 1/2.
(11)

The norm of the gradient of the computed solution and the multiplier are plot in Figure 1. For this
problem it is possible to compute error tables. This is done only if the parameter known solution
is set True (cf. Table 1).

3. Connections with overdetermined boundary value problems

A solution up to the boundary-value problem (4) should satisfy the relation:

∂τup = ∂τg on ∂Ω

where ∂τ denotes tangent derivative. Altogether with ‖∇up‖∞ ≤ 1, this implies

|∂νup|2 ≤ 1− ‖∂τg‖2.
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Figure 2: Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a rectangle.

Figure 3: Plot of the norm of the gradient |∇up| and the multiplier λp = |∇up|p−2 on a domain with
an interior corner. The scale in the plot of the multiplier is truncated.

CMM



Elastoplastic torsion implementation using the deal.II library — 8/10

Therefore, if g is such that ‖∂τg‖ = 1 in a neighborhood of Γ ⊆ ∂Ω, then up solves indeed a
partially overdetermined problem

up = g on ∂Ω, ∂νup = 0 on Γ.

For fully overdetermined problems such as

u = 0 and |∇u| = c on ∂Ω

it is known (Farina and Kawohl, 2008) that if the problem has a solution then Ω must be a ball.
To the best of our knowlwdge, partially overdetermined problems have not been considered yet

in the literature. We invite the curious reader to try the following boundary condition,

g(θ) =



θ2 if θ ≤ 0.5

θ − 0.25 if 0.5 < θ ≤ π − 0.5

(π − 0.75− (θ − (π − 0.5))2 if π − 0.5 < θ ≤ π + 0.5

(2π − θ)− 0.25) if π + 0.5 < θ ≤ 2π − 0.5

(θ − 2π)2 otherwise

(12)

which has a large portion of the boudary where ‖∇τu‖ = 1. This functions is included (but
commented) in the code.

4. Parameters

Most of the parameters involved in Algorithms 1, 2 and 3 are defined in the parameters file EPT.prm,
and can be easily changed without need to recompile the code. The full list of the parameters is in
Table 1.
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Table 1: Parameters used in Algorithm 3, by section.

parameter name default value pattern description

Global Parameters

p 100 Double(2.1) Penalization parameter.
known solution true Bool() Whether the exact solution is known.

Mesh & Refinement Parameters

Code for the domain 0 Integer(0,2) Number identifying the domain in which
we solve the problem
0: circle, 1: rectangle, 3: glowinski

No of initial refinements 4 Integer(0) Number of global mesh refinement steps
applied to initial coarse grid

No of adaptive refinements 8 Integer(0) Number of global adaptive mesh refine-
ments

top fraction of cells 0.25 Double(0) refinement threshold
bottom fraction of cells 0.05 Double(0) coarsening threshold

Algorithm Parameters

Descent direction 0 Integer(0,1) 0: Preconditioned descent, 1: Newton
Method

init p 10 Double(2) Initial p
delta p 50 Double(0) increase of p
Max CG it 1500 Integer(1) Maximum Number of CG iterations
CG tol 1e-10 Double(0) Tolerance for CG iterations
max LS it 45 Integer(1) Maximum Number of LS iterations
line search tolerence 1e-6 Double(0) line search tolerance constant
init step length 1e-2 Double(0) initial step length in line-search
Max inner 800 Integer(1) Maximum Number of inner iterations
eps 1.0e-8 Double(0) Threshold on norm of the derivative to

declare optimality achieved
hi eps 1.0e-9 Double(0) Threshold on norm of the derivative to

declare optimality achieved in for highly
refined mesh

hi th 8 Integer(0) Number of adaptive refinement before
change convergence threshold
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