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Introduction

* Flow problems with
complex geometries are
widespread

Dimple

Fuel Rod

PWR fuel assembly and spacer grid spring

(Kim et al. 2001)




« CFD simulation for one smaller sized assembly,
68 million cells weizos)

« Body-fitted mesh is not suitable

* Qur choice: Fictitious Domain method (FD method) W@




 Basic concept regarding the FD method:

Whenever a problem needs to be solved on a domain
with an irregular boundary, it may be useful to embed it
Into a larger domain of a simpler shape (quarteroniana vai.




Critical point regarding the FD method implementation:
How to include the influence from the “immersed” BC




Strategies regarding this immersed boundary issue:

1 . Pe n alty fU n Ctl O n m ethOd (Ramiére et al. 2005, Zhou and Saito 2014, Saito and Zhou 2014)
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Strategies regarding this immersed boundary issue:

2 . Lag range mUIUleer methOd (Glowinski et al. 1994, Glowinski et al. 1995, Glowinski et al.

1998)

Y Powerful, but may be not suitable for problems with
complex 3d geometries m




Poisson problem

Governing equation
_A —

where ),
1
2(_ ), which is Dirichlet BC
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Weak formulation

H e 1 eis the solution space and its Definition is:

=1 (), =

Lagrangian functional:
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FD method implementation

1. Embed the original domain

()




FD method implementation

2. Define Lagrangian functional for the fictitious domain Q:

Solution is valid in the whole domain Q and the Lagrange
multiplier is valid on the immersed boundary .

In addition, = and =




Corresponding weak formulation for Q:

Our strategies
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1. Approach 1: penalty lives everywhere
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 Our strategies

2. Approach 2:

C-) oC ) ) )

w(X) is equal to one in  and equal to zero in the rest areas. AHM




 Our strategies

2. Approach 2:

about function k(x)

() = () ()

r

Three k(x) functions
AHM




Numerical detalls

1. FEM, | 10 )

Gaussian Quadrature for computing the integration

Direct solver UMFPACK for solving the resulting linear
system

L-2 error norm for the error analysis




« Solution profile

1. In quality, these
two results are
similar

(@) and (b) are direct result, computed from step-6
(c) and (d) are results from the FD method




Error analysis: Approach 1

10000 100000 1000000 10000000 1. Oscillation appears

d.o.f

A #1 = Trendline of #1 In Coarse meSh

e~0( 79,
comparable to the
penalty function
method (Ramiére et al. 2005)
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Error analysis: Approach 2, with constant function
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10000000
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#2 (c=3)
#3 (c=2)
#4 (c=1)
#5 (c=0.5)
#6 (c=0.25)

=—trendline of #2
=—trendline of #3
—trendline of #4
=—trendline of #5

trendline of #6

1.

2.

When is small (i.e.,
c is small), the result

IS not stable

= X
= 0.2 50.5,1.0,2.0 3.0)

e~O( ), forc=1
e~O( 19), for c=0.5
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Summary 1

1. Both of our two approaches can get reasonable results




Case 2. Stokes flow problem

Two parallel, fully
developed, Poiseuillle flow
with very low velocity

Governing equation

-d il - ( )]+ =0
-di v=0
where

e()=5[C )+C )L

= 00aft.
Y




FD method implementation

1. Embed the original domain




FD method implementation

2. Define Lagrangian functional for the fictitious domain

The solutions a n d are valid in the whole domain Q.
In addition, = = 0.0and = =0.0.

For simplicity, we set = 0.0.

Q\ ,AT&




Corresponding weak formulation for Q:

2 Ye( ), &( ))Q—( o= ( )Q_(’)y’
-(, )Jo=0,
C,) =0,).




Our strategy for the boundary related term

Approach 2, boundary region is used here

- < < +




 Numerical detalils

FEM, 2( ), 1( )

Gaussian Quadrature for computing the integration

. The resulting linear system Is solved iteratively

(modified from Glowinski et al. 1995, a variation of the
Uzawa algorithm).

. L-2 error norm for the error analysis

T




Direct simulation’s
velocity profile(step-22)
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FD method’s velocity profile




« Error analysis

10000 100000 1000000 10000000 10000000C

" ' '@ constant function = ' T T 7 dlof
best trendline from the constant function
& triangle function
best trendline from the triangle function
A Gaussian function
best trendline from the Gaussian function
= reference line e~O(dx)
= == reference line e~O(dx"2)

0.001

« Among the three Kk(x) functions, Gaussian function

may be the best, whose error can be expressed as:
o~ 1236 }W&




Summary 2

1. The modified iterative algorithm used here can be
parallelized

2. What we have from the Case 2 can be the basis for us

to solve the Navier-Stokes problem




Future work

1. Parallelize the code for the Stokes flow problem

2. Solve the Navier-Stokes problem (Operator splitting
method)
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Questions?




Interpolation area between two blocks

(Overset mesh)

Supplement - introduction
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burdens to the user or computers
Intrace eten W Iks with different meshes

(Multi-block)
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Weak formulation
Find @} 2()
2 (e ),&( ))w-( , Do = (,0)
-(, )oo =( ,0)

(eC )e()), =2 ()&




Lagrangian functional




Supplement Case 2 Approach

 |n Glowinski et al. 1995

Concerning the multiplier A, its interpretation is very simple
since it is equal to the jump of




Supplement- iterative algorithm 1

Initial guess part

2. Find the initial velocity U° and the initial pressure P° by solving the StokesZRSl\YE

problem 24e( ). 9),- C 1 Do

=()g=C O O 9,

and
-(, 99=0.
In addition, impose

where

In addition, impose:
w= r,

where i is the boundary condition for the fictitious domain V.
There are three setting regarding the weight function ( ), when we use Approach 2

3. Compute g% 3. Compute © by solving
CO» () M
+([1- w0l , g
=( O ()%= ),
+([1- ()] .0)q

= 0.0 in this designed problem (i.e., no-slip boundary condtion




Supplement- iterative algorithm 2
L ersonkspemmsomseps

Iteration loop starts from step-5

5.FindU and  which satisfy 5. Solve

29e()eC D)= C , Do

=C O v Da

6. Compute p by using: 6. compute

7.GetnewA,Ua n & . GetnewA, and




Supplement |terat|ve algorithm 3

CO» () "Ha
+([@-w()l-, *He
=C G- (). Do
)
+[1- O, e

9. If it reachesthe stop criteria : 9. Compute the iteration error:

o O ()1 P
QWO ()] 02

solutionsare a1 U and P If it is equal or smaller than the stop criterion , then, the solutions are

AL tlanpndt?t

10.If it h a s redchedthe stopcriteria, compute 10. If it hasn’t reached the stop criteria, compute:

| +1|2

12

Restartto computethe step5 by using this new ~ *1 Restart to compute the step-5 by using thisnew ~ **




