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Introduction 

• Flow problems with 

complex geometries are 

widespread 

 

PWR fuel assembly and spacer grid spring 
(Kim et al. 2001) 

 



• CFD simulation for one smaller sized assembly,  

    68 million cells (Wei 2013,) 

• Body-fitted mesh is not suitable 

 

• Our choice:  Fictitious Domain method (FD method) 



• Basic concept regarding the FD method: 

Whenever a problem needs to be solved on a domain 

with an irregular boundary, it may be useful to embed it 

into a larger domain of a simpler shape (Quarteroni and Valli). 



Critical point regarding the FD method implementation: 

   How to include the influence from the “immersed” BC     

    



Strategies regarding this immersed boundary issue: 

1. Penalty function method (Ramière et al. 2005, Zhou and Saito 2014, Saito and Zhou 2014) 

      

 

     

      => limitation exists (𝑒~𝐶 𝜀+ℎ) 

 

 

 

 

1

𝜀
 𝑣∙𝑢 𝑑𝑥 
Ω\𝜔

 



Strategies regarding this immersed boundary issue: 

2. Lagrange multiplier method (Glowinski et al. 1994, Glowinski et al. 1995, Glowinski et al. 

1998) 

      

 

     

       

 

 

 

 

 𝝀⋅𝑢−𝑔𝑑𝑥         
𝛾

 

Ý Powerful, but may be not suitable for problems with    

     complex 3d geometries 



Case 1: Poisson problem 

Governing equation 

 

 

 

 

−∆𝑢=𝑓            𝑖𝑛 𝜔, 

𝑢=𝑔             𝑜𝑛 𝛾, 

where 𝑓∈𝐻−1𝜔 ,  

𝑔∈𝐻
1

2𝛾, which is Dirichlet  BC 



Weak formulation 

 

 

 

 

               𝑎𝜔 𝑣,𝑢= 𝑣,𝑓   ∀𝑣∈𝐻0
1𝜔,                                

where                   

             𝑎𝜔 𝑣,𝑢= 𝛻𝑣∙𝛻𝑢𝑑𝑥
𝜔

              ∀𝑢,𝑣∈𝐻0
1𝜔, 

                  𝑣,𝑓= 𝑣∙𝑓𝑑𝑥
𝜔

.                                                      

Here,𝑉𝑔 is the solution space and its Definition is: 

   𝑉𝑔= 𝑣  𝑣∈𝐻
1𝜔,𝑣=𝑔 𝑜𝑛 𝛾. 

Lagrangian functional: 

𝐿𝑢,𝜆=
1

2
 𝛻𝑢⋅𝛻𝑢𝑑𝑥−
𝜔

 𝑓⋅𝑢𝑑𝑥+ 𝜆⋅𝑢−𝑔𝑑𝑥         𝑖𝑛 𝜔
𝛾𝜔

 



FD method implementation 

1. Embed the original domain 

 

 

 

 

 
 



FD method implementation 

2. Define Lagrangian functional for the fictitious domain Ω: 

 

 

 

 
 

𝐿𝑢 ,𝜆=
1

2
 𝛻𝑢 ⋅𝛻𝑢 𝑑𝑥−
𝛺

 𝑓 ⋅𝑢 𝑑𝑥+ 𝜆⋅𝑢 −𝑔 𝑑𝑥         𝑖𝑛 Ω
𝛾𝛺

.  

Solution 𝑢  is valid in the whole domain Ω and the Lagrange 

multiplier 𝜆 is valid on the immersed boundary ‎. 

In addition, 𝑓  
𝜔
=𝑓 and 𝑔  𝛾=𝑔. 



Corresponding weak formulation for Ω: 

 

 
 

Our strategies 

1. Approach 1: penalty lives everywhere 

 

 

 (𝛻𝑣∙𝛻𝑢 Ω
)𝑑𝑥− (𝑣∙𝑓 Ω

)𝑑𝑥+ 𝑣∙𝜆𝑑𝛾
𝛾

=0,  

 𝜇⋅𝑢 −𝑔 𝑑𝛾𝛾
=0.  

 𝑣∙𝜆𝑑𝛾 ⇒
𝛾

  𝑣∙𝜆𝑑𝑥
Ω\𝜔

 

       ⇒ 𝑤(𝑥)∙𝑣∙𝜆
Ω

𝑑𝑥 

e.g. 

where 

𝑤𝑥= 
1,  𝑥∈Ω\𝜔
0,  𝑥∈𝜔

 



• Our strategies 

2. Approach 2: 

 

ω :                              𝑑(𝑥)<𝑟𝑎−𝜃,                        

𝛾 :               𝑟𝑎−𝜃≤𝑑(𝑥)≤𝑟𝑎+𝜃, 

Ω\𝜔 \𝛾 :     𝑟𝑎+𝜃≤𝑑(𝑥). 

𝜃=𝑐×ℎ 

e.g. 

 𝑣∙𝜆𝑑𝛾 
𝛾

 ⇒ 𝑤(𝑥)∙𝒌(𝒙)∙𝑣∙𝜆
Ω

𝑑𝑥 

w(x) is equal to one in 𝛾  and equal to zero in the rest areas. 



• Our strategies 

2. Approach 2: 

     about function k(x) 

  

 𝑠(𝑥)
𝛾

𝑑𝑥≈ 𝑘(𝑥)∙𝑠𝑥𝑑𝑥
𝛾 

 

Three k(x) functions 



Numerical details 

1. FEM, 𝑢ℎ,𝜆ℎ ∈ 𝑄1𝐾  

 

2. Gaussian Quadrature for computing the integration 

 

3. Direct solver UMFPACK for solving the resulting linear 

system 

 

4. L-2 error norm for the error analysis 



• Solution profile 

1. In quality, these 

two results are 

similar 

(a) and (b) are direct result, computed from step-6 

(c) and (d) are results from the FD method 

 



• Error analysis: Approach 1 
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d.o.f 

#1 Trendline of #1

1. Oscillation appears 

in coarse mesh 

 

2. e~Oℎ0.98, 

comparable to the 

penalty function 

method (Ramière et al. 2005)  

 

 



• Error analysis: Approach 2, with constant function 

 

1. When 𝜃 is small (i.e., 

c is small), the result 

is not stable 

𝜃=𝑐×ℎ, 
𝑐=0.25,0.5,1.0,2.0 𝑎𝑛𝑑 3.0

 

 
 
 

2. e~Oℎ1 , for c=1 

       e~Oℎ1.3 , for c=0.5 
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Summary 1 

1. Both of our two approaches can get reasonable results 



Case 2: Stokes flow problem 

Two parallel, fully 

developed, Poiseuille flow 

with very low velocity 

 

Governing equation 

−div2𝜂∙𝜀𝑢 +𝛻𝑝=0    𝑖𝑛 𝜔,  

            −div 𝑢=0      𝑖𝑛 𝜔,  

where 

ε𝑢=
1

2
𝛻𝑢+ 𝛻𝑢𝑇, 

𝑢=0.0 at Γ. 
 

 
 



FD method implementation 

1. Embed the original domain 

 

 

 

 

 
. 



FD method implementation 

2. Define Lagrangian functional for the fictitious domain 

Ω:  

 
 

 

 

 

 

 

The solutions 𝑢  and 𝑝   are valid in the whole domain Ω. 

In addition,  𝐹  
𝜔
=𝐹=0.0 and 𝑔  𝛾=𝑔=0.0.  

For simplicity, we set 𝐹  
Ω\𝜔
=0.0. 

 𝐿𝑢 ,𝑝 ,𝜆=    2𝜂
1

2
 𝛻𝜀 2
Ω

𝑑𝑥− 𝑝𝛻𝑢 Ω
𝑑𝑥 

                     

                        − 𝐹 ⋅𝑢 𝑑𝑥+ 𝜆⋅𝑢 −𝑔 𝑑𝑥  𝑖𝑛 Ω,𝛾Ω
  



Corresponding weak formulation for Ω: 

 

 
2νε𝑣,ε𝑢 

Ω
− 𝛻𝑣,𝑝 Ω= 𝑣,𝐹 Ω− 𝑣,𝜆γ,                           

−𝑞,𝛻𝑢 Ω=0,  

𝜇,𝑢 𝛾= 𝜇,𝑔𝛾.                                            



Our strategy for the boundary related term 

     Approach 2, boundary region 𝛾  is used here 

𝛾 :    𝑦𝑖𝑏−ℎ𝑓≤𝑦𝑞𝑝≤𝑦𝑖𝑏+ℎ𝑓. 

 

 

 

 y2 

y3 

(1) 

(2) 



• Numerical details 

1. FEM, 𝑢ℎ,𝜆ℎ ∈ 𝑄2𝐾 , 𝑝ℎ ∈ 𝑄1𝐾  

 

2. Gaussian Quadrature for computing the integration 

 

3. The resulting linear system is solved iteratively 

(modified from Glowinski et al. 1995, a variation of the 

Uzawa algorithm).  

 

4. L-2 error norm for the error analysis 



Direct simulation’s 

velocity profile(step-22) 
FD method’s velocity profile 



• Among the three k(x) functions, Gaussian function 
may be the best, whose error can be expressed as: 

e~ℎ1.236 
 

 
 

 

• Error analysis 
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Summary 2 

1. The modified iterative algorithm used here can be 

parallelized 

 

2. What we have from the Case 2 can be the basis for us 

to solve the Navier-Stokes problem 



Future work 

1. Parallelize the code for the Stokes flow problem 

 
2. Solve the Navier-Stokes problem (Operator splitting 

method) 
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Questions? 



• Several techniques are invented, such as multi-

block or overset mesh, but they all cause extra 

burdens to the user or computers 

 

• Interface between two blocks with different meshes 

(Multi-block) 
• Interpolation area between two blocks 

(Overset mesh) 

Supplement - introduction 



Weak formulation 

      Find       𝑢∈𝐻1𝜔,𝑝∈𝐿2𝜔  

2𝜂ε𝑣,ε𝑢
ω
− 𝛻𝑣,𝑝ω= 𝑣,0𝜔    ∀𝑣∈𝐻0

1𝜔,           

−𝑞,𝛻𝑢ω= 𝑣,0𝜔    ∀𝑞∈𝐿0
2𝜔,                                 

      where 

ε𝑣,ε𝑢
ω
=2𝜂 ε𝑣∙εu

𝜔

𝑑𝑥, 

𝛻𝑣,𝑝ω= 𝛻𝑣∙𝑝𝜔
𝑑𝑥,    𝑣,0𝜔= 𝑣∙0𝜔

𝑑𝑥, 

𝑞,𝛻𝑢ω= 𝑞∙𝛻𝑢𝜔
𝑑𝑥,      𝑣,𝐺𝜔= 𝑞∙0𝜔

𝑑𝑥, 

 
      

 



Lagrangian functional 

       𝐿𝑢,𝑝,𝜆=    2𝜂
1

2
 𝛻𝜀2
ω

𝑑𝑥− 𝑝𝛻𝑢𝜔
𝑑𝑥 

                                                          

                               − 𝐹⋅𝑢𝑑𝑥+ 𝜆⋅𝑢−𝑔𝑑𝑥  𝑖𝑛 𝜔.𝛾𝜔
 

 

      

 



Supplement Case 2 Approach 

• In Glowinski et al. 1995 

Concerning the multiplier λ, its interpretation is very simple 

since it is equal to the jump of 

 

𝜈
𝜕𝑢

𝜕𝑛
−𝑛𝑝 



Supplement- iterative algorithm 1 
Iterative algorithm in Glowinski et al. 1994 Iterative algorithm used for solving our designed problem 

Initial guess part 

1. Guess ɚ0 

2. Find the initial  velocity U0 and the initial  pressure P0 by solving the Stokes 

problem   

𝜈 𝛻𝑈0∙𝛻v
Ω

𝑑𝑥− 𝑃0𝛻∙v
Ω

𝑑𝑥 

=   𝑓∙vΩ
𝑑𝑥+ 𝜆0∙v𝛾

𝑑𝛾, 

and 

 q𝛻∙𝑈0

Ω

dx=0. 

In addition, impose: 

       U0=𝑔1     𝑜𝑛 Γ, 

where ũ is the boundary condition for  the fictitious domain Ý. 

2. solve 

2νε𝑣,ε𝑢 0
Ω
− 𝛻𝑣,𝑝 0Ω 

= 𝑣,𝐹 
Ω
− 𝑤𝑥∙𝑘𝑥∙𝑣,𝜆0Ω, 

and 

−𝑞,𝛻𝑢 0Ω=0. 

In addition, impose 

       U0=𝑔1     𝑜𝑛 Γ, 

where 

𝐹  
𝜔

=0.0, 𝐹  
Ω\𝜔

=0.0. 

𝑤𝑥={
0, 𝑖𝑛 Ω\ γ 
1,              𝑖𝑛 γ 

 . 

There are three setting regarding the weight function 𝑘𝑥, when we use Approach 2 

3. Compute g0: 

 𝑔0∙
𝛾

𝜇 𝑑𝛾= 𝑈0−𝑔2 ∙
𝛾

𝜇 𝑑𝛾 

3. Compute 𝑔0 by solving 

𝑤𝑥∙𝑘(𝑥)∙𝜇,𝑔0Ω 

+ 1−wx ∙𝜇,𝑔0Ω 

= 𝑤𝑥∙𝑘(𝑥)∙μ,𝑢 0−𝑔
Ω

 

+( [1−𝑤𝑥]∙𝜇,0)Ω 

  

𝑔=0.0 in this designed problem (i.e., no-slip boundary condtion 



Supplement- iterative algorithm 2 
4. Set 𝑊0=𝑔0 

  

Iteration loop starts from step-5 

5. Find U 𝑛 and 𝑃 𝑛 which satisfy  

𝜈 𝛻𝑈 𝑛∙𝛻v
Ω

𝑑𝑥− 𝑃 𝑛𝛻∙v
Ω

𝑑𝑥= 𝑊𝑛∙v
𝛾

𝑑𝛾 

and 

 𝑞𝛻∙𝑈0Ω
dx=0. 

5. Solve  

2νε𝑣,ε𝑈 𝑛
Ω
− 𝛻𝑣,𝑃 𝑛Ω 

= 𝑤𝑥∙𝑘𝑥∙v,𝑊𝑛Ω, 

and 

−𝑞,𝛻𝑈 𝑛Ω=0. 

6. Compute ρ𝑛 by using: 

𝜌𝑛=
 𝑔𝑛2
𝛾

𝑑𝛾

 𝑈 𝑛∙𝑊𝑛𝛾
𝑑𝛾

 

6. compute 

𝜌𝑛=
 𝑤(𝑥)∙𝑘(𝑥)∙𝑔𝑛2Ω

 𝑑𝑥

 𝑤(𝑥)∙𝑘(𝑥)∙𝑢 𝑛∙𝑊𝑛Ω
 𝑑𝑥

 

7. Get new λ,U and P: 

λ𝑛+1=𝜆𝑛−𝜌𝑛𝑊
𝑛 

𝑈𝑛+1=𝑈𝑛−𝜌𝑛𝑈 
𝑛 

                                  𝑃𝑛+1=𝑃𝑛−𝜌𝑛𝑃 
𝑛 

7. Get new λ,𝑢  and 𝑝 : 

λ𝑛+1=𝜆𝑛−𝜌𝑛𝑊
𝑛 

𝑢 𝑛+1=𝑢 𝑛−𝜌𝑛𝑈 
𝑛 

                                    𝑝 𝑛+1=𝑝 𝑛−𝜌𝑛𝑃 
𝑛 



Supplement- iterative algorithm 3 
8. Renew 𝑔𝑛 by  

 𝑔𝑛+1∙
𝛾

𝜇 𝑑𝛾 

= 𝑔𝑛∙
𝛾

𝜇 𝑑𝛾−𝜌𝑛 𝑈 𝑛∙
𝛾

𝜇 𝑑𝛾     

8. Renew 𝑔𝑛 

𝑤𝑥∙𝑘(𝑥)∙𝜇,𝑔𝑛+1Ω 

+ 1−w𝑥 ∙𝜇,𝑔𝑛+1Ω 

= 𝑤x∙𝑘(𝑥)∙𝜇,𝑔𝑛 Ω 

−𝜌𝑛𝑤𝑥∙𝑘𝑥∙𝜇,𝑈 𝑛  

+([1−𝑤𝑥]∙𝜇,𝑔𝑛+1)Ω 

9. If  it  reaches the stop criteria : 

 𝑔𝑛+12
𝛾

𝑑𝛾

 𝑔02
𝛾

𝑑𝛾
≤𝜀 

solutions are ɚn+1, Un+1 and  P n+1. 

9. Compute the iteration error: 

 𝑤(𝑥)∙𝑘(𝑥)∙𝑔𝑛+12Ω
𝑑𝑥

 wx∙𝑘(𝑥)∙𝑔02𝑑𝑥Ω

 

If it is equal or smaller than the stop criterion 𝜀, then, the solutions are 

λ𝑛+1,𝑢 𝑛+1 and 𝑝 𝑛+1 

10. If  it  hasnôt reached the stop criteria,  compute: 

𝑟𝑛=
 𝑔𝑛+12
𝛾

𝑑𝛾

 𝑔𝑛2
𝛾

𝑑𝛾
, 

and get 

𝑊𝑛+1=𝑔𝑛+1+𝑟𝑛𝑊
𝑛. 

  

Restart to compute the step-5 by using this new 𝑊𝑛+1 

10. If it hasn’t reached the stop criteria, compute: 

𝑟𝑛=
 𝑤(𝑥)∙𝑘(𝑥)∙𝑔𝑛+12Ω

𝑑𝑥

 𝑤(𝑥)∙𝑘(𝑥)∙𝑔𝑛2Ω
𝑑𝑥
, 

and get 

𝑊𝑛+1=𝑔𝑛+1+𝑟𝑛𝑊
𝑛. 

  

Restart to compute the step-5 by using this new 𝑊𝑛+1 


