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Abstract: This paper provides an overview of the new features of the finite element library
deal.II, version 9.3.

1 Overview

deal.II version 9.3.0 was released June 17, 2021. This paper provides an overview of the
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new features of this release and serves as a citable reference for the deal.II software library
version 9.3. deal.II is an object-oriented finite element library used around the world in the
development of finite element solvers. It is available for free under the GNU Lesser General Public
License (LGPL). Downloads are available at https://www.dealii.org/ and https://github.
com/dealii/dealii.

The major changes of this release are:

– Experimental support for simplex and mixed meshes (see Section 2.1);

– Improved flexibility of the particle infrastructure (see Section 2.2);

– Support for global-coarsening multigrid algorithms (see Section 2.3);

– Advances in the matrix-free infrastructure (see Section 2.4);

– Usage of MPI-3.0 shared-memory features to reduce memory footprint (see Section 2.5);

– Improved support for evaluation and integration at arbitrary points (see Section 2.6);

– Simplified implementation for face integrals (see Section 2.7);

– Nine new tutorial programs and a new code gallery program (see Section 2.9).

In addition, we discuss the candi installation program in Section 2.8.

While all of these major changes are discussed in detail in Section 2, there are a number of other
noteworthy changes in the current deal.II release that we briefly outline in the remainder of this
section:

– Each non-artificial cell now has a globally unique index that can be queried for active cells
via CellAccessor::global_active_cell_index() and for level cells via ::global_level_
cell_index(). The information can be used to efficiently index into global vectors storing
data for each cell, rather than for each degree of freedom corresponding to a finite element
field.

– Previously, functions and classes were marked using the macro DEAL_II_DEPRECATED and
then typically removed in the release after the one in which these deprecation notices
were available to users. We have now extended this policy by introducing the DEAL_II_
DEPRECATED_EARLY macro, which indicates that a feature will be deprecated in the next
release. In contrast to the first macro, it will only give warnings if deal.II has been
configured with -D DEAL_II_EARLY_DEPRECATIONS=ON.

– After each update of the master branch of deal.II, we build a new Docker image with all
features enabled. It is accessible on Docker Hub via dealii/dealii:master-focal. This
image is particular useful when used in the continuous-integration processes of user codes.

– A long-standing orientation issue for the vector valued finite element FE_RaviartThomas<3>
was resolved. This issue prevented the user from using this class on meshes with cells that
do not have standard orientation, i.e., cells that have faces that are reflected and/or rotated
relative to their neighbors. In all eight possible neighboring configurations, we can now
guarantee that the necessary H(div)-conformity condition is met for all polynomial orders.
This is verified through a new conformity test on non-standard meshes.

– deal.II now requires compilers to support the C++14 standard [38].

The changelog lists more than 200 other features and bugfixes.

https://www.dealii.org/
https://github.com/dealii/dealii
https://github.com/dealii/dealii
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Figure 1: Reference cells in 2D (triangle, quadrilateral) and 3D (tetrahedron, pyramid, wedge, hexahedron)
with the support points indicated both for linear (•) and quadratic (×) shape functions.

reference cell finite element dimension degree

simplex (line, triangle, tetrahedron) FE_SimplexP, FE_SimplexDGP 1–3 1–2
FE_SimplexP_Bubbles 1–3 1–2

pyramid FE_PyramidP, FE_PyramidDGP 3 1
wedge FE_WedgeP, FE_WedgeDGP 3 1–2

Table 1: List of new scalar FiniteElement classes for the new reference-cell types. Vectorial elements can
be constructed based on these classes via FE_Systems.

2 Major changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed in
this section. It of course also contains a vast number of smaller changes and added functionality;
the details of these can be found in the file that lists all changes for this release; see [47].

2.1 Experimental simplex and mixed mesh support

The current release of deal.II adds experimental support for simplex meshes (consisting of trian-
gles in 2D; tetrahedra in 3D) and mixed meshes (consisting of triangles and/or quadrilaterals in 2D;
tetrahedra, pyramids, wedges, and/or hexahedra in 3D). Many freely available mesh-generation
tools produce such kind of meshes and they are widely used in industry and applications, but
were previously unsupported by deal.II. As a consequence, users of deal.II had to pre-process
such meshes and convert them to pure quadrilateral or hexahedral meshes.

Support for simplex and mixed meshes is not universal in deal.II at this point. While deal.II
can read such meshes, write output for them, and solve partial differential equations with certain
finite elements, there are also many areas that have not been fully adapted to the new functionality.
In particular, deal.II currently only offers low-order finite elements on such meshes, and many
utility functions might throw exceptions when used with such meshes.

A user-focused summary of information around simplex and mixed mesh support is also avail-
able on the new module page at https://www.dealii.org/current/doxygen/deal.II/group_
_simplex.html. In particular, it shows how to solve a simple Poisson problem like in the step-3
tutorial program on simplex and mixed meshes, with a focus on the necessary changes to the
workflow. At the time of this release, there are also 92 tests (in the folder tests/simplex) targeting
the new simplex and mixed mesh support. In particular, the folder also contains ported variants
of a number of existing tutorials: 1, 2, 3, 4, 6, 7, 8, 12, 17, 18, 20, 23, 31, 38, 40, 55, 67, 68, and 74.

2.1.1 Refactoring of internal data structures To enable simplex and mixed mesh support,
we performed a major refactoring of the internal data structures of deal.II. In particular, the
Triangulation class and the DoFHandler class have undergone large changes and now support
meshes composed of all of the cells shown in Fig. 1.

https://dealii.org/developer/doxygen/deal.II/changes_between_9_2_0_and_9_3_0.html
https://www.dealii.org/current/doxygen/deal.II/group__simplex.html
https://www.dealii.org/current/doxygen/deal.II/group__simplex.html
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The template parameters of the internal data structures of Triangulation have been removed
and the type of each cell and of each face (in 3D) is stored. The function Triangulation::create_
triangulation(), which converts a given list of cells and vertices to the internal data structures,
has been rewritten inspired by [48] and this has had the side effect of a speed-up of up to a factor
of 5. Minor adjustments have also been made to the parallel::shared::Triangulation and
parallel::fullydistributed::Triangulation classes such that the new mesh types can also
be used in parallel.

The internal data structures of DoFHandler used to be hard-coded for pure hypercube meshes,
while the hp::DoFHandler used to be built around CRS-like data structures. Due to the need of
CRS data structures in the DoFHandler in the context of more general meshes, we have merged
hp::DoFHandler into the DoFHandler. The class hp::DoFHandler, which is now a dummy deriva-
tion of DoFHandler, currently only exists for compatibility reasons and has been deprecated, see
Section 2.10. It will be removed in the next release.

2.1.2 Generating meshes The most obvious way to generate a simplex or a mixed mesh is
to read the mesh from a file generated by an external mesh generator. Currently, we support the
VTK, MSH (generated by the gmsh program [27]), and EXODUS II file formats.

Alternatively, one can create a pure hypercube mesh with the functions in the GridGenerator
namespace and convert it to a pure simplex mesh with the function GridGenerator::convert_
hypercube_to_simplex_mesh().

2.1.3 Using simplex meshes After creating a triangulation, one can proceed in the same way
as for hypercube meshes. In particular, one selects an appropriate finite element, mapping, and
quadrature class as follows:

C++ code

FE_SimplexP<dim, spacedim> fe(degree);
MappingFE<dim, spacedim> mapping(FE_SimplexP<dim, spacedim>(1));
QGaussSimplex<dim> quadrature(degree + 1);

DoFHandler<dim, spacedim> dof_handler(tria);
dof_handler.distribute_dofs(fe);

FEValues<dim, spacedim> fe_values(mapping, fe, quadrature , flags);

The list of currently supported finite element classes is provided in Table 1. Currently, only
linear and quadratic mappings via the MappingFE and MappingFEField classes built around
the listed nodal elements are available. For quadrature, the classes QDuffy, QGaussSimplex,
QWitherdenVincentSimplex [58, 65], QGaussPyamid, and QGaussWedge are available.

2.1.4 Using mixed meshes For mixed meshes, concepts known from the hp-context have been
applied: different finite element classes are assigned to different cells based on their respective
kind of reference cell. In the case of a 2D mixed mesh, which can only consist of triangles and
quadrilaterals, the finite element defined on a triangle (e.g., FE_SimplexP) and on a quadrilateral
(e.g., FE_Q) can be collected in a hp::FECollection as follows:

C++ code

hp::FECollection<dim, spacedim> fe
{FE_SimplexP<dim, spacedim>(degree), FE_Q<dim, spacedim>(degree)};

Similarly, hp::QCollection and hp::MappingCollection can be used to construct appropriate
collections. Furthermore, the correct active finite element index, which points to the correct finite
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element of that cell, has to be assigned to each cell. The following piece of code will then correctly
enumerate all degrees of freedom on the mesh:

C++ code

DoFHandler<dim> dof_handler(tria);

for (const auto &cell : dof_handler.active_cell_iterators())
switch (cell->reference_cell_type())
{
case ReferenceCell::Type::Tri: cell->set_active_fe_index(0); break;
case ReferenceCell::Type::Quad: cell->set_active_fe_index(1); break;
// 3D (Tet, Pyramid, Wedge, Hex) not shown
default: Assert(false, ExcNotImplemented());

}

dof_handler.distribute_dofs(fe);

2.1.5 Practical implications The introduction of simplex and mixed meshes leads to some
implications for the user if these features are to be used. For instance, each cell might have a
different type with different number of vertices, lines, and faces so that these quantities can no
longer be compile-time constants. This information used to be queried from the GeometryInfo
class. Instead, we have extended relevant classes, e.g., TriaAccessor or TriaCellAccessor, with
useful new functions like n_vertices(), n_lines(), or n_faces() so that users can simply write:

C++ code

for (const auto &cell : tria.active_cell_iterators())
for (unsigned int f = 0; f < cell->n_faces(); ++f)
// do something with cell->face(f);

Alternatively, one can use an iterator-based approach to loop over all faces of a cell, introduced in
the previous release. The relevant functions have been adjusted to be able to deal with the now
variable number of faces per cell:

C++ code

for (const auto &cell : tria.active_cell_iterators())
for (const auto &face : cell->face_iterators())
// do something with face

Furthermore, for mixed meshes, the number of degrees of freedom will differ between cells so
that cell-local arrays need to be resized for each cell (as has previously already been the case in
the hp-context):

C++ code

Vector<double> local_rhs;
for (const auto &cell : dof_handler.active_cell_iterators())
{
hp_fe_values.reinit(cell);
local_rhs.reinit(cell->get_fe().n_dofs_per_cell());
// ...

}

What is true for cells is also true for faces in 3D: faces can be either triangles or quadrilaterals. This
is the case even if no mixed mesh is used if the mesh consists exclusively of pyramids or wedges.
As a consequence, some functions, e.g. FiniteElementData::n_dofs_per_face(), have been
extended with a new optional argument for the face number.
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Geometric information about cells and faces – previously provided by the GeometryInfo class for
hypercube-type cells – is now available via the ReferenceCell class that is defined for each of
the seven possible reference cells. The correct ReferenceCell for a cell or face can be obtained,
respectively, using cell->reference_cell(), and either cell->face(f)->reference_cell() or
cell->reference_cell().face_reference_cell(f).

Furthermore, many functions in deal.IIused mappings that, when not given explicitly, defaulted
to (bi-/tri-)linear ones. These no longer work for simplex or mixed meshes, so users will need to
explicitly provide the correct mapping for the mesh to be used.

2.1.6 Matrix-free support deal.II’s matrix-free support has also been extended to simplex
and mixed meshes, for both continuous and discontinuous elements. From a user perspective, the
main changes are to pass a d-dimensional quadrature object (rather than one for 1D), and the fact
that FEEvaluation and FEFaceEvaluationmust not specify the polynomial degree via template
arguments, determining all information at runtime. More details can be found in Section 2.4.

For the current release, no advanced algorithms for evaluating values and gradients at quadrature
points, such as sum factorization, are used. The use of full interpolation matrices is for now
acceptable since only low-order elements are supported.

2.2 Advances in the particle infrastructure

deal.II’s particle infrastructure has been modernized to store nearly all particle data as a col-
lection of continuous data arrays instead of a container of objects. This reorganization improves
cache efficiency when iterating over particles and reduces the amount of data that needs to be
moved when a particle moves to a different cell. Keeping track of unused data slots allows to
reuse them for new particles, significantly reducing memory allocations when particles are cre-
ated after other particles have left the local domain. The data arrays are rebuilt and sorted during
every mesh refinement cycle.

Additionally, the particle infrastructure now supports a faster search algorithm for particles that
moved farther than one cell width between particle sorting operations, and support for updating
ghost particles (particles that live in ghost cells around the local domain) by updating their
properties instead of destroying and rebuilding their container has been added. The latter step
improves the efficiency of ghost particle exchange significantly. With this feature, deal.II can be
used for scalable parallel Lagrangian models such as the Discrete Element Method (DEM) [30] or
Molecular Dynamics.

Finally, the Particles::DataOut class now supports writing particle properties as vectors or
tensors instead of a collection of scalars if the properties are marked as such.

2.3 Advances in the multigrid infrastructure

Until now, deal.II has only supported “local smoothing” multigrid algorithms [18] wherein
smoothers only act on the cells of a given refinement level, skipping those parts of the mesh that
have not been adaptively refined to that level. This approach guarantees that the work done
summed up over all levels is proportional to the number of unknowns, and is consequently
necessary so that the overall multigrid preconditioner can have a complexity of O(N).

In contrast, the current release now also supports “global coarsening” algorithms [14, 60] when
using continuous (FE_Q, FE_SimplexP) and discontinuous (FE_DGQ, FE_SimplexDGP) elements.
Global coarsening builds multigrid levels for the entire domain, coarsening all cells of a trian-
gulation regardless of how many times they have been refined. In addition, the framework
now available in deal.II is not only applicable to geometric coarsening, but can also perform
coarsening by reducing the polynomial degree (p-multigrid, see [24]), for example to support
hp-adaptive meshes. Finally, the implementation also supports transfer between continuous and
discontinuous elements as a further way to create multigrid levels.
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These new multigrid variants promise fewer solver iterations and better parallel scalability than
the existing local smoothing algorithms, but have to deal with hanging nodes within each level
and generally require more computational work per iteration overall.

The transfer operators between two levels have been implemented in the new class MGTwoLevel
Transfer, which can be set up via the functions MGTwoLevelTransfer::reinit_geometric_
transfer() or MGTwoLevelTransfer::reinit_polynomial_transfer() for given DoFHandler
and AffineConstraints objects corresponding to the two levels. The resulting transfer operators
can then be collected in a single MGTransferGlobalCoarsening object that can be used just as
the previous workhorse MGTransferMatrixFree within the Multigrid algorithm. To facilitate
the construction of matrix diagonals with matrix-free methods as well as a matrix representation
of the coarse level matrix, new utility functions create_diagonal() and create_matrix() have
been added to the MatrixFreeTools namespace (see also Subsection 2.4).

The usage of the new transfer operators (and of some of the utility functions) in the context of
a hybrid multigrid algorithm (hp-multigrid with algebraic multigrid as coarse-grid solver) for
hp-problems is demonstrated in the new tutorial step-75, see also Section 2.9.

2.4 Advances in the matrix-free infrastructure

deal.II’s matrix-free framework enables high-throughput operations for applications in which
only the availability of the action of a matrix, but not the entries of the matrix, are necessary. This
framework has been substantially extended in the current release.

2.4.1 Precompilation of evaluation kernels Both the FEEvaluation and FEFaceEvaluation
classes use template parameters for the polynomial degree of the finite element k and the number
of the 1D quadrature points q to generate near-optimal code for these operations. For application
codes that rely on operators of many different degrees (e.g., because they use p-multigrid or
hp-algorithms), creating all instantiations can be overly complex and incur long compile times.

In the current release, specializations of these classes that do not rely on the template parameters
k and q (expressed in the code using special values “-1” and “0”) have been added. For example:

C++ code

FEEvaluation<dim, -1, 0, n_components , Number, VectorizedArrayType>
phi(range, dofhandler_index , quadrature_index , first_selected_component);

These classes select at runtime – for common low and medium polynomial degree/quadrature
combinations (k ≤ 6 and q ∈ {k+1, k+2, b(3k)/2c}) – efficient precompiled implementations and de-
fault to non-templated evaluation kernels otherwise (see also FEEvaluation::fast_evaluation_
supported()).

In the case that even higher polynomial degrees are needed (e.g., k ≤ 12), one can precompile the
relevant internal classes (FEEvaluationFactory, FEFaceEvaluationFactory, CellwiseInverse
MassFactory) in the user code for needed degrees and VectorizedArrayTypes in the following
way:

C++ code

#define FE_EVAL_FACTORY_DEGREE_MAX 12

#include <deal.II/matrix_free/evaluation_template_factory.templates.h>

DEAL_II_NAMESPACE_OPEN
template struct dealii::internal::FEEvaluationFactory
<dim, VectorizedArrayType::value_type , VectorizedArrayType>;

// same for FEFaceEvaluationFactory and CellwiseInverseMassFactory (skipped)
DEAL_II_NAMESPACE_CLOSE
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2.4.2 Parallel matrix-free hp-implementation In release 9.1, large parts of the hp-algorithms
in deal.II were ported to a model that allows for parallel matrix-based simulations [6]. In the
present release, the parallel hp support was extended to MatrixFree.

Until now, the FEEvaluation classes used the template parameters k and q to select the correct
active FE and quadrature index and users were responsible for the cumbersome detection of
subranges of the same k and q within the cell ranges returned by the matrix-free loops. The creation
of subranges is now performed internally, and the non-templated versions of the FEEvaluation
classes have been extended for the hp-case. To determine the desired FE and quadrature index of
a subrange, the current cell/face range has to be provided to the constructors of the FEEvaluation
classes. These changes enable users to write matrix-free code independently of whether hp-
capabilities are used or not.

The new tutorial step-75 presents how to use the new hp-related features in MatrixFree in the
context of a hybrid-multigrid solver.

2.5 MPI-3.0 shared-memory support

In many large computations, certain pieces of data are computed (or read from disk) once and
then treated as read-only. If this information is needed by more than one MPI process, it is more
efficient to store this information only once in shared memory among all processes located on a
multicore node. MPI supports the creation of such shared memory windows since version 3.0,
and deal.II can now use this in the AlignedVector and Table classes that are often used for large
lookup tables for classes such as InterpolatedTensorProductGridData.

Shared memory storage is also used in the MatrixFree and LinearAlgebra::distributed::
Vector classes. If MatrixFree has been configured by setting MatrixFree::AdditionalData::
communicator_sm appropriately, then MatrixFree::create_dof_vector() creates vectors that
share information among all processes on one node. As a consequence, the FEEvaluation classes
can access vector elements owned by other processes and node-local communication can be
skipped in certain cases. To prevent race conditions, MatrixFree uses local barriers at the
beginning and the end of loops (loop(), cell_loop(), loop_cell_centric()).

The new step-76 tutorial program illustrates this case in the context of the solution of the Euler
equations. It reaches a speed-up of 27% compared to the original version, step-67, by using the
new feature. For more details and the usage of the feature in the library hyper.deal, see [52].

2.6 Evaluation and integration at arbitrary points

In a number of circumstances, finite element solutions need to be evaluated at arbitrary reference
points that change from one element to the next. Two important examples are particle simulations
coupled to a finite element solution, or algorithms on non-matching grids. The existing FEValues
class is a poor fit for this task, as it is based on the assumption that evaluation of shape functions
and their derivatives happens at the same quadrature points on every cell, and that consequently
expensive computations can be done once and results re-used for many subsequent cells. The new
class FEPointEvaluation provides a more convenient interface for cases where the evaluation
on different cells does not happen at the same points mapped from the reference cell. For
tensor product finite elements (FE_Q, FE_DGQ) and tensor product mappings (MappingQGeneric
and derived classes), the new approach is also very fast, as it can use some of the matrix-free
infrastructure and vectorization facilities.

As an example, let us consider the evaluation of a surface tension force in the context of sharp-
interface methods, whose contribution is added to a fluid solver by multiplication with test
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function and addition over quadrature points located at the interface section ΓK = Γ ∪ K of the
current cell K and that is, in general, positioned differently within K than for any other cell:

(v, κn)Γ ≈

∑
q

v(xq) ·
(
κ(xq) n(xq)

)
(JxW)q.

In deal.II, this can now be conveniently written as

C++ code

phi_curvature.reinit(cell, reference_points);
phi_normal.reinit(cell, reference_points);
phi_force.reinit(cell, reference_points);

phi_curvature.evaluate(curvature_values , EvaluationFlags::values);
phi_normal.evaluate(normal_values , EvaluationFlags::values);

for (unsigned int q = 0; q < n_points; ++q)
phi_force.submit_value(phi_curvature.get_value(q) *

phi_normal.get_value(q) * JxW[q], q);

phi_force.integrate(force_values , EvaluationFlags::values);

The quadrature points (at reference positions reference_points) and the related JxW value can,
for example, come from a mesh of lower dimension. Determining to which cell a quadrature
point belongs to on the background mesh, including the reference cell coordinates reference_
points, is aided by functions like find_active_cell_around_point() and find_all_active_
cells_around_point() from the GridTools namespace. While these functions have been avail-
able in deal.II previously, their performance has been considerably enhanced with the afore-
mentioned more optimized code paths for selected mappings.

While FEPointEvaluation assumes that evaluation points are already sorted according to the
owning cells and thus can focus on cell-local operations, the new class RemotePointEvaluation
is responsible for determining the owning cells in a distributed context and for providing efficient
communication patterns for the data exchange. In deal.II, the class has been successfully applied
together with FEPointEvaluation to evaluate a distributed solution vector at arbitrary points (see
also the VectorTools::point_values() function).

2.7 Simplified implementation for face integrals

Discontinuous Galerkin (DG) methods – and other methods with penalty terms defined on faces
– require the evaluation of averages and jumps across cell faces, involving values and derivatives
of the shape functions and solutions from two adjacent cells. The FEInterfaceValues class, first
introduced in deal.II 9.2, is designed to provide the necessary interface.

For example, the interface terms of the SIPG formulation for a Laplace problem∑
F

− 〈[[vh]] , {{∇uh}} · n〉F − 〈{{∇vh}} · n, [[uh]]〉F + 〈[[vh]] , σ [[uh]]〉F

with face jump [[·]] and average {{·}} can be implemented as (also see step-74):

C++ code

cell_matrix(i, j) +=
( - fe_iv.jump(i, q) * (fe_iv.average_gradient(j, q) * n)
- (fe_iv.average_gradient(i, q) * n) * fe_iv.jump(j, q)
+ penalty * fe_iv.jump(i, q) * fe_iv.jump(j, q)

) * JxW[q];
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Internally, this class provides an abstraction for two FEFaceValues objects (or FESubfaceValues
when using adaptive refinement). The class introduces new interface degrees of freedom indices
that are the union of the degrees of freedom indices of the two FEFaceValues objects. The
interface degrees of freedom indices can be converted to the corresponding local degrees of
freedom indices of the two cells using a helper function. New in the current release is better
support for vector-valued problems: scalar or vector components of shape functions can now be
extracted by providing an FEValuesExtractors object.

See step-12, step-47, step-50, and step-74 for more details.

2.8 The source-based toolchain installer candi

The requirement to download, compile, and install deal.II and its dependencies from source is
a major obstacle to many deal.II users. Compiling all dependencies from source can be difficult
but is a necessity on operating systems for which binary packages aren’t available or on compute
clusters and other machines without root privileges for the user to install system dependencies.

The source based installation of deal.II and its many dependent libraries can be done with
the candi script tool for various Linux operating systems, within the Windows Subsystem Linux
(WSL), and on OS X (experimental). The general assumption is that a C, C++ and Fortran compiler
and suitable MPI-compilers for the base compilers as well as the corresponding development
system packages are available.

candi is a bash-script based tool, is an abbreviation of “compile and install” and is released under
the GNU LGPL v3.0. The origin of candi is a fork made in 2013 from dorsal, a now-retired source
based installer for the FEniCS library. The candi tool can be found via the download page of
deal.II since version 8.5 or from github.com/dealii/candi, and is under active development.
To install older releases of deal.II toolchains, one can check out the candi branch of the git
repository that corresponds to the desired deal.II version.

candi downloads, unpacks, compiles, and installs an individual library (called a “package” in
candi), a list of libraries, or a complete toolchain. The toolchain installation is the default behavior
and the default configuration ensures that most of the deal.II step tutorials can be used directly.
The package installation mode is also useful to generate docker containers. In toolchain mode,
candi checks for and deals with dependencies between libraries appropriately.

Each package for a library is defined by variables for its name and version, a (remote or local)
download location, its packaging format (e.g. tar, gz, or zip), a checksum, its general build chain
(e.g., using autotools, cmake, or others), as well as configuration options. Moreover, one can
give specific instructions for each of the steps being necessary for the unpacking, configuration,
or building of a package. A new feature allows candi to skip user prompts, allowing its use in a
batch mode.

candi does all this by either downloading packages from the internet, including through mirrors,
or re-using previously downloaded or checked out from a repository. If temporary files of candi
are not removed, one can use the developer mode to prepare patches or developments for any of
the packages.

candi is organized in the following way:

– candi.sh: the bash script which controls the overall process. Available command line
options are listed by calling “candi.sh -h” and explained in the README.md file.

– candi.cfg (or local.cfg): the default toolchain configuration file. Here one can easily
switch on/off features, give additional configuration, and list the packages for a toolchain.

– deal.II-toolchain folder: the central project folder for deal.II-based toolchains. It
contains subfolders for packages (libraries, dependencies, general tools in a specific version),
platforms (operating systems) and for patches to be applied after unpacking a package.

github.com/dealii/candi
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The installer is developed in the dealii/candi github repository, and uses continuous integration
(CI) to ensure that old and new features are working as expected.

2.9 New and improved tutorials and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release.
In addition, there are a number of new tutorial programs:

– step-19 is an introductory demonstration of deal.II’s particle functionality. It solves
the coupled problem of charged particles and an electric field, using a cathode tube as an
example.

– step-66, a program written by Fabian Castelli at Karlsruhe Institute of Technology, shows
how to solve a nonlinear problem using Newton’s method in the matrix-free framework in
parallel. The PDE considered is the Gelfand problem −4u = exp(u).

– step-68 is a demonstration of how to embed and distribute particles in a parallel triangu-
lation. It tracks the movement of a set of particles in a fluid flow and illustrates how to
distribute a parallel domain according to the number of locally owned particles instead of
the number of locally owned cells.

– step-71 focuses on automatic and symbolic differentiation (AD and SD, in short) as a tool to
make solvers for complex, nonlinear problems possible. To this end, deal.II can interface
to a number of AD and SD libraries, specifically Trilinos’ Sacado package [13], ADOL-C [31],
and SymEngine [61]. The tutorial illustrates how these techniques can be used to compute
derivatives first of a rather simple function, and then of the much more complex energy
functions of two magnetoelastic and magneto-viscoelastic material formulations in which
just the scalar energy functional takes up the better part of a page, and even first derivatives
can only be computed with heroic effort.

– step-72 illustrates the use of automatic differentiation to simplify the computation of deriva-
tives in the context of nonlinear partial differential equations where one needs to compute
the Jacobian from the residual operator for efficient Newton iterations. step-72 builds on
the minimal surface solver step-15 and replaces the hand-construction of the Jacobian by
either computing it as the derivative of the residual, or alternatively as the second derivative
of an energy functional that then also yields the residual itself.

– step-74 implements the symmetric interior penalty Galerkin (SIPG) method for Poisson’s
equation using the FEInterfaceValues class within the MeshWorker::mesh_loop() frame-
work. This tutorial demonstrates a simple way to assemble face integrals.

– step-75 demonstrates a state-of-the-art way of solving a simple Laplace problem using
hp-adaptation and hybrid multigrid methods on machines with distributed memory. This
tutorial points out particularities in porting serial hp-adaptive code for parallelization. Fur-
thermore, it guides through the process of writing an efficient matrix-free preconditioner
for hp-adaptive applications.

– step-76 is an explicit time integrator for the compressible Euler equations discretized with
a high-order discontinuous Galerkin (DG) scheme, using the matrix-free infrastructure just
as step-67 does. The tutorial presents advanced topics, like the usage of cell-centric loops
and the new MPI-3.0 shared-memory capabilities of MatrixFree to reach high through-
put. Furthermore, the utilization of the template parameter VectorizedArrayType and the
application of lambda functions to describe cell and face integrals are discussed.



12

– step-77 is a program that illustrate deal.II’s interfaces to the SUNDIALS library [37], and
specifically the KINSOL nonlinear solver. Like the step-72 program mentioned above, it is
a variation of the minimal surface solver step-15: Instead of implementing the nonlinear
Newton and line search loop ourselves, step-77 relies on KINSOL for decisions such as
when to rebuild the Jacobian matrix, when to actually solve linear systems with it, and
how to form updates that drive the residual to convergence. The program illustrates the
substantial savings that can be obtained by not re-inventing the wheel but instead building
on an existing and well-tuned software such as KINSOL.

deal.II’s interfaces to the various SUNDIALS sub-packages were also updated to the latest
SUNDIALS release, 5.7.

– step-78, a program written by Tyler Anderson at Colorado State University, solves the
one-dimensional Black-Scholes equations to model the price of stock options.

– step-79 is a program for topology optimization. Written by Justin O’Connor at Colorado
State University, the program asks what the optimal distribution of a finite amount of ma-
terial in a domain is to maximize its strength (or optimize some other objective functional).
It uses advanced optimization techniques to deal with the nonlinearity of the problem as
well as with the equality and inequality constraints that characterize the application.

There is also a new program in the code gallery (a collection of user-contributed programs that
often solve more complicated problems than tutorial programs, and intended as starting points
for further research rather than as teaching tools):

– “Laplace equation coupled to an external simulation program” was contributed by
David Schneider and Benjamin Uekermann at Technical University of Munich. It extends
step-4 to a time-dependent Poisson problem and couples it with a simple external surface-
based application, using the preCICE library [16, 46]. preCICE, also allows to couple deal.II
to external simulation packages, such as OpenFOAM, SU2, CalculiX, or FEniCS, using
adapter classes. The webpage https://precice.org/ provides several more deal.II-
based tutorials, including interesting fluid-structure interaction applications.

2.10 Incompatible changes

The 9.3 release includes around 45 incompatible changes; see [47]. The majority of these changes
should not be visible to typical user codes; some remove previously deprecated classes and func-
tions; and the majority change internal interfaces that are not usually used in external applications.
That said, the following are worth mentioning since they may have been more widely used:

– The hp::DoFHandler class has been deprecated. The standard DoFHandler class is now
capable of all hp-functionalities.

– Consequently, all template arguments DoFHandlerType are now obsolete, and classes like
DataOut or SolutionTransfer for example no longer require them. If you rely on these
template arguments, an interim namespace Legacy has been introduced that provides all
affected classes with the old interface for a transition period.

– GridTools::find_active_cell_around_point() no longer throws an exception when no
cell is found, but returns an invalid iterator. User codes previously catching an exception
will need to be changed.

https://precice.org/
https://dealii.org/developer/doxygen/deal.II/changes_between_9_2_0_and_9_3_0.html
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3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up to date information and a bibtex entry
see

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [11], and a more recent
publication documenting deal.II’s design decisions is available as [7]. If you rely on specific
features of the library, please consider citing any of the following:

– For geometric multigrid: [40, 39, 18];

– For distributed parallel computing: [10];

– For hp-adaptivity: [12];

– For partition-of-unity (PUM) and finite el-
ement enrichment methods: [22];

– For matrix-free and fast assembly tech-
niques: [42, 43];

– For computations on lower-dimensional
manifolds: [23];

– For curved geometry representations and
manifolds: [32];

– For integration with CAD files and tools:
[33];

– For boundary element computations:
[29];

– For the LinearOperator and Packaged-
Operation facilities: [49, 50];

– For uses of the WorkStream interface: [63];

– For uses of the ParameterAcceptor con-
cept, the MeshWorker::ScratchData base
class, and the ParsedConvergenceTable
class: [57];

– For uses of the particle functionality in
deal.II: [26].

deal.II can interface with many other libraries:

– ADOL-C [31, 64]

– ArborX [44]

– ARPACK [45]

– Assimp [59]

– BLAS and LAPACK [4]

– cuSOLVER [19]

– cuSPARSE [20]

– Gmsh [27]

– GSL [25]

– Ginkgo [28]

– HDF5 [62]

– METIS [41]

– MUMPS [1, 2, 3, 51]

– muparser [53]

– OpenCASCADE [54]

– p4est [17]

– PETSc [8, 9]

– ROL [56]

– ScaLAPACK [15]

– SLEPc [34]

– SUNDIALS [37]

– SymEngine [61]

– TBB [55]

– Trilinos [35, 36]

– UMFPACK [21]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [6, 5].

https://www.dealii.org/publications.html
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